Skip to main content

Can I look at reported standard errors (SE) and decide if means differ?


No guarantees, but roughly if means differ by 3*SE then they are statistically significant.  This is based on the Least Significant Difference, which is 2*sqrt(2)*SE.  Often people use non-overlapping confidence intervals as a decision rule, but this is equivalent to 4*SE, which is a bit conservative.

Things that make 3*SE fail:
1)  Actually statistical differences depend on the standard error of difference, SED, not SE.  Anything in the model that makes these differ will make the rule fail, such as covariates and blocking factors.
2)  In general, mixed models with random effects will make the rule fail, because random variance is included in SE, but not in SED.  But this will make 3*SE rule conservative, 3*SED will be even smaller.  If 3*SE suggests a statistical difference, difference most likely exists.

Also take a look at Error Bars paper.

Comments

Popular posts from this blog

Estimation of the Peak in Quadratic Regression

 Problem:   You are running a standard quadratic (polynomial) regression analysis, and are specifically interested in the X and Y values at the peak.  If you use standard regression software, typically there will be no option that allows the peak to be estimated, with standard errors. Example:   You are studying Growth as a function of Age.  Of particular interest is when maximum Growth occurs, and at what Age. SAS code to generate artificial data, and run the analysis is: data one; do Age=1 to 20; Growth=95 + 2.7*Age - .3*Age*Age + 5*rannor(22); end; proc nlin plots=fit; parms int=2 lin=1 quad=1; model Growth = int + lin*Age + quad*Age*Age; estimate 'Age at peak' -lin/(2*quad); estimate 'Growth at peak' int + lin*(-lin/(2*quad)) + quad*(-lin/(2*quad))*(-lin/(2*quad)); run; The standard quadratic regression model with intercept, linear and quadratic slopes, is coded into Proc NLIN which has the ability to estimate any fun...

DANDA - A macro collection for easier SAS statistical analysis

Objective :  You are running ANOVAs or regressions in SAS, and wish there was a way to avoid writing the dozens of commands needed to conduct the analysis and generate recommended diagnostics and summary of results, not to mention the hundreds of possible options that might be needed to access recommended methods.  A possible solution is to download a copy of danda.sas below, and use this macro collection to run the dozens of commands with one statement.  We will also have future posts covering various uses of danda.sas, giving examples as always. danda.sas is under continued development, check this page for updates. Date                       Version               Link 2021/03/15             2.12.030          danda.sas 2021/03/15       ...

Reporting results from transformed analyses

Objective :  Transformed data, for example log(y), is analyzed to correct normality or equal variance requirements.  But we want to report means and standard errors in the original units. SAS example : data one;  do treat=1 to 3;  do rep=1 to 5;    y=10 + treat+ exp(rannor(111));    logy=log(y);    output;  end;end; run; proc mixed plots=all;   class treat;   model y=treat;   lsmeans treat/pdiff; run; proc mixed plots=all;   class treat;   model logy=treat;   lsmeans treat/pdiff; run; The original data, variable y, might have units of pounds.  If a transformation is needed, we simply calculate a new variable by applying a mathematical function known to improve normality or equal variance, and run the same analysis on the new variable.  Commonly used choices are listed in the second table below. However, looking at the results for both analyses we see treat Mean Y S...